Phonetica

Editor: K. Kohler, Kiel

Separatum

Publisher: S. Karger AG, Basel Printed in Switzerland

> Daniel Silverman Jongho Jun

Linguistics Department, University of California at Los Angeles, Los Angeles, Calif., USA

Original Paper

Phonetica 1994; 51: 210-220

Aerodynamic Evidence for Articulatory Overlap in Korean

Abstract

Aerodynamic evidence indicates the existence of overlapped labial//velar sequences in Korean. Oral pressure readings for [ipku] show a brief rarefaction in oral pressure during the consonantal sequence, indicating that tongue retraction during a front-back vowel sequence occurs simultaneously with full closures at the labial and velar places of articulation. This confluence of phenomena results in the observed pressure rarefaction due to expansion of the sealed oral cavity. Similarly, pressure readings for [upki] show a brief, marked increase during the consonantal sequence, indicating that tongue advancement during a back-front vowel sequence temporally overlaps with full closures at both the labial and velar places of articulation. This results in a pressure increase due to contraction of the sealed oral cavity. To our knowledge, the present study is the first to demonstrate consonant coproduction in terms of oral pressure, and to report on coarticulatory effects involving four sequenced segments.

0. Introduction

In this study we present evidence for the existence of overlapped labial//velar sequences

We would like to thank Dani Byrd, Randy Diehl, Bruce Hayes, Pat Keating, Ian Maddieson, John Ohala, Caroline Smith, Donca Steriade, Henry Tehrani, and Lisa Zsiga, for their helpful comments and suggestions. We are especially grateful to Peter Ladefoged for his assistance and guidance. in Korean. A native speaker of the Seoul dialect (one of the authors) was recorded in the UCLA Phonetics Laboratory uttering [VCCV] sequences involving both labial and velar consonants, and front and back vowels, in a variety of combinations ([ipki, upku, ipku, upki, ikpu, ukpi, ikpi, ukpu]). Both nonce words (experiment 1) and real words (experiment 2) were employed. Oral airflow, as well as pha-

.

ryngeal and suprapharyngeal pressure, were recorded. It was found that back-front vowel combinations, in conjunction with intervocalic -pk- sequences ([upki]), produced a marked increase in suprapharyngeal (henceforth oral) pressure during the course of the consonantal sequence – a far greater increase than was found when the same consonantal sequence was flanked by vowels of identical phonemic quality ([ipki, upku]). We claim that these oral pressure readings are the result of tongue advancement during a back-front vowel sequence, temporally overlapping with full closures at both the labial and velar places of articulation. The result is a brief increase in oral pressure due to oral cavity contraction. Relatedly, front-back vowel combinations in the same consonantal environment ([ipku]) produced a marked rarefaction in oral pressure: tongue retraction during a front-back vowel sequence, occurring simultaneously with full closures at the labial and velar places of articulation, result in a decrease in oral pressure due to cavity expansion.

Previous studies investigating gestural timing relationships in terms of air pressure include Ladefoged [1962] and Demolin [1992], which report on phonological labiovelar stops in West and Central African languages, respectively. Ohala [1981] investigates epenthetic stop production in English through similar techniques. Kozhevnikov and Chistovich [1965] and Maddieson [1990] investigate medial consonant clusters using nasal and oral airflow measurements, respectively. Marchal [1987] investigates consonant coproduction employing electropalatography. Relatedly, Nolan [1992] and Zsiga [1993] employ electropalatography to investigate coarticulation. Spectrographic analyses are employed in Öhman [1966] and Zsiga [1992]. Finally, Byrd [1992] presents a study of consonant coproduction involving synthesized speech production. To our knowledge, the present study is the first to demonstrate consonant coproduction in terms of oral pressure.

Moreover, earlier studies have reported either (i) transconsonantal vowel-to-vowel effects, to the exclusion of intervening consonant effects [Öhman, 1966; Fowler, 1983, *inter alia*], or (ii) interconsonantal overlap, to the exclusion of flanking vowel effects [Browman and Goldstein, 1986, 1990; Zsiga, 1992, 1993; Byrd, 1992; Nolan, 1992]. The present study investigates the coproduction of adjacent consonants in conjunction with their flanking vowels. To our knowledge, no previous study has reported on this confluence of phenomena.

1. Experiment 1

1.1 Subjects

The sole subject was an adult male speaker of the Seoul dialect (one of the authors). The subject has no history of pathological speech and considers his Korean untainted by foreign languages.

1.2 Methods

The subject was fitted with a mouth mask connected to pressure/flow transducers. One pressure tube was inserted behind the lips, thus recording oral pressure. A second tube was inserted nasally into the pharyngeal cavity, thus recording pharyngeal pressure. Finally, oral airflow was recorded.

1.3 Tokens

Eight combinations of VCCV sequences were employed, involving -pk- and -kp- clusters flanked by i-i, i-u, u-i, and u-u. The word list, read 3 times by the subject, is shown in (1).

(1) upki, upku, ipki, ipku, ukpi, ukpu, ikpi, ikpu

As can be seen, these nonce forms consist of an onsetless syllable followed by a codaless one. Only two vowels, [i, u], were used, in an attempt to control for features other than frontness and backness. Due to a regular process of postobstruent fortition in Korean [see Kim-Renaud, 1986, for more details], [pk] and [kp] will surface as [pk'] and [kp'], respectively ([k'] and [p'] represent glottalized obstruents). We assume that this fortition process has no effect on the coarticu-

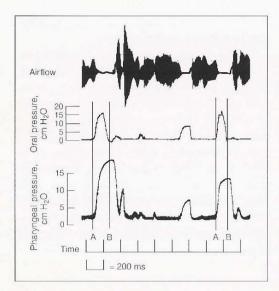
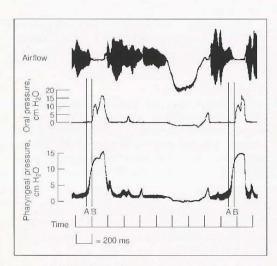



Fig. 1. Sample airflow, oral pressure, and pharyngeal pressure records for [upku] and [ipki].

Fig. 2. Sample airflow, oral pressure, and pharyngeal pressure records for [ukpu] and [ikpi].

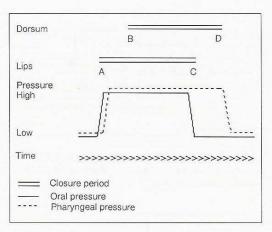
latory phenomena under investigation and therefore have not included this detail in our transcriptions. The list was read in the order shown, without a carrier phrase. An additional list of actual Korean words was recorded as well. This list is presented and discussed in section 2.

1.4 Results

Figure 1 shows sample flow and pressure data for [upku] and [ipki]. These sequences consist of labial and velar voiceless stops flanked by vowels of identical phonemic quality. Comparable results were obtained in the other two trials.

The pressure records show that pharyngeal and oral pressure increase at exactly the same point in time (point A). This indicates, as expected, that labial closure either temporally precedes or is simultaneous with dorsal closure, for an increase in oral pressure entails an increase in pharyngeal pressure as well. Were the dorsal closure to precede the labial one, there should be an increase in pharyngeal pressure before an increase in oral pressure. This is confirmed in figure 2, which shows sample flow/pressure data for [ukpu, ikpi]. In figure 2, increases in pharyngeal pressure temporally precede oral pressure increases (point A precedes point B), indicating that the dorsal closure temporally precedes the labial closure, as expected.

Returning now to figure 1, observe that pharyngeal pressure is sustained as oral pressure returns to normal (point B). That is, the increase in pharyngeal pressure is sustained for a longer period than the increase in oral pressure. This indicates both that dorsal closure precedes labial release, i. e., that the two closures temporally overlap for a period (resulting in the phonetic equivalent of a labiovelar stop), and that the release of the dorsal closure occurs *after* the release of the labial closure.


Figure 3 summarizes in schematic form the hypothesized articulatory configurations which produce the attested pressure data in figure 1. Below the schematized closure record are the pressure data, also in schematized form. At point A, labial closure results in an increase in both oral and pharyngeal pressure. At point B, dorsal closure occurs. (Point

B, it should be noted, can only be estimated, as the pressure record for these data provides insufficient information to determine its exact point in time.) At point C, the labial closure is released, resulting in oral pressure returning to normal, while pharyngeal pressure is maintained, due to the continuing dorsal closure. Finally, at point D, the dorsal closure is released and pharyngeal pressure returns to normal.

If the schematic representation in figure 3 truly reflects the actual state of articulatory affairs, it is predicted that manipulating the volume of the oral cavity during the point of closure overlap should result in pronounced pressure effects. That is, expanding the volume of the sealed cavity should result in a marked *decrease* in oral pressure. Conversely, contracting the sealed cavity should result in a marked *increase* in oral pressure.

This hypothesis is confirmed upon observing the pressure record for the same labial-velar consonantal sequence in a modified vocalic environment consisting of front-back vowels (i-u), and back-front vowels (u-i). Pressure/flow data for two tokens of [ipku] are presented in figure 4. Note the pronounced oral pressure rarefaction just after the labial closure (point A). This, we claim, is due to the tongue retracting from a front position (for [i]) to a back position (for [u]) as the dorsal closure is implemented. Oral pressure rarefaction begins soon after the labial closure, indicating that the dorsal closure follows the labial closure almost immediately. The volume of the sealed oral cavity which results from overlapping labial and dorsal closures increases upon tongue retraction. This increase in volume is due, we claim, to the tongue body's sliding back across the soft palate. This articulatory configuration is schematized in figure 5.

As the oral cavity is sealed at both ends, and as the labial closure is by and large fixed, cavity expansion due to tongue retraction across

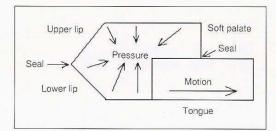

Fig. 3. Schematic representation of dorsal and labial activity, as well as oral and pharyngeal pressure effects for [upku] and [ipki].

Fig. 4. Airflow, oral pressure, and pharyngeal pressure records for two tokens of [ipku].

the soft palate is the only reasonable explanation of the pressure facts.

Returning now to figure 4, as the labial closure is released, oral pressure increases back to normal (point B). However, pharyngeal pressure remains high until dorsal release (point C).

Fig. 5. Schematic representation of articulator dynamics and resultant pressure effects during consonantal overlap in [ipku].

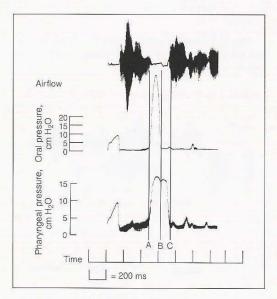
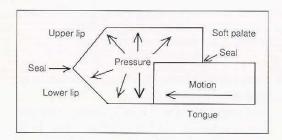



Fig. 6. Airflow, oral pressure, and pharyngeal pressure records for [upki].

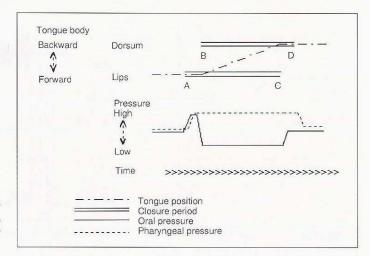
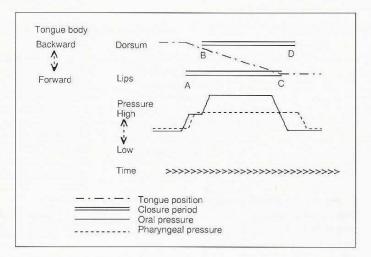


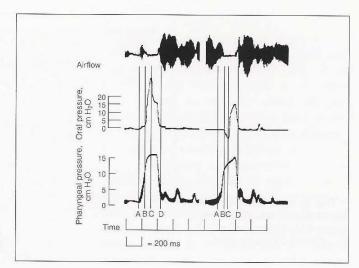
Fig. 7. Schematic representation of articulator dynamics and resultant pressure effects during consonantal overlap in [upki].


Results consistent with our hypothesis were found for the sequence [upki]. Figure 6 indicates a very pronounced increase in oral pressure upon labial closure for one token. Comparable results were obtained in the other trials. During the multiple closure, the oral pressure in figure 6 is far greater than that observed when this same consonantal sequence is flanked by vowels of identical quality (cf. fig. 1). This result is consistent with our hypothesis that the two closures overlap in time, and in addition, temporally co-occur with vocalic tongue movement: during the course of the overlapped labial and dorsal closures, the tongue body slides forward across the palate in its movement from back to front. The resulting contraction of the sealed oral cavity results in a marked increase in oral cavity pressure (point A), which persists until the labial seal is broken (point B). Pharyngeal pressure is maintained until the dorsal closure is released (point C). This articulatory configuration is schematized in figure 7.

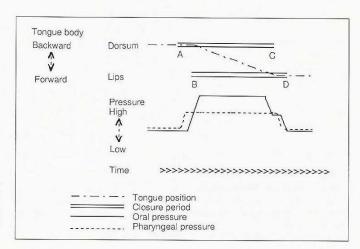
Figures 8 and 9 provide a schematized representation of the data in figures 4 and 6, with tongue body movement superimposed on the labial and dorsal records. In figure 8, at point A, a labial closure is formed, followed almost immediately by a dorsal closure (point B). Simultaneously, the tongue body retracts, sliding back along the soft palate. Oral pressure rarefies due to oral cavity expansion. At point C, the labial closure is released, and oral pressure returns to normal. Finally, at point D, the dorsal closure is released, and pharyngeal pressure returns to normal. A similar scenario obtains for figure 9, the only difference being that tongue advancement during the multiple closure results in greatly increased oral pressure.

Note finally sample pressure records for the sequences [ukpi, ikpu] (fig. 10). For [ukpi], after an increase in pharyngeal pressure (point A), a marked increase in oral pressure is ob-

Fig. 8. Schematic representation of dorsal and labial activity, tongue body activity, and pharyngeal pressure effects for [ipku].


Fig. 9. Schematic representation of dorsal and labial activity, tongue body activity, as well as oral and pharyngeal pressure effects of [upki].

served (point B). In contrast, for [ikpu] an oral pressure rarefaction is observed (point B). Here again, these pressure effects are a result of the confluence of consonantal and vocalic articulations.


For [ukpi], at point A, dorsal closure for [k] results in an increase in pharyngeal pressure. Immediately following, at point B, labial closure proceeds, with concomitant tongue advancement. The now sealed oral

cavity experiences a marked pressure increase, just as observed for [upki]. At point C, the dorsal closure is released, and oral pressure is reduced to equivalency with pharyngeal pressure. Finally, at point D, the labial seal is broken, and both pressure records return to normal.

For [ikpu], comparable results were obtained. At point A, dorsal closure results in heightened pharyngeal pressure. At point B,

Fig. 10. Sample airflow, oral pressure, and pharyngeal pressure records for [ukpi] and [ikpu].

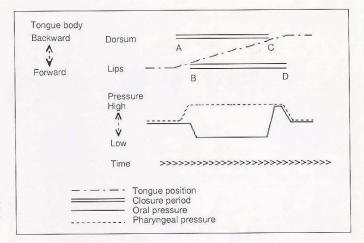


Fig. 11. Schematic representation of dorsal and labial activity, tongue body activity, and oral and pharyngeal pressure effects for [ukpi].

labial closure with concomitant tongue retraction for the i-u vowel sequence results in a brief period of oral pressure rarefaction. At point C, dorsal release results in an oral pressure increase to match pharyngeal pressure. Finally, at point D, the labial closure is released, and both pressure records return to normal. These results are schematized in figures 11 and 12.

1.5 Summary

Back-front vowel combinations, in conjuction with intervocalic -pk- or -kp- sequences, produced a far greater increase in oral pressure during the course of the consonantal sequence than was found when the same consonantal sequence was flanked by vowels of identical phonemic quality. Front-back vowel combinations in conjunction with intervocalic -pk- or -kp-sequences produced a marked rarefaction in oral pressure. Note finally the telling asymmetry in oral pressure between [ipku] (fig. 4) and [ikpu] (fig. 10). In

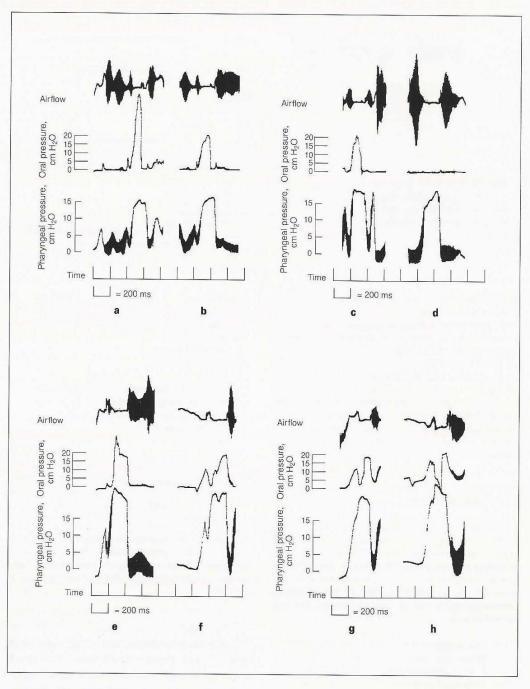
Fig. 12. Schematic representation of dorsal and labial activity, tongue body activity, and oral and pharyngeal pressure effects for [ikpu].

[ipku], the pressure drop occurs after the pressure increase, whereas in [ikpu] the pressure drop occurs before the pressure increase. This shows that phonological ordering persists into the phonetics, despite the lengthy period of temporal overlap. Thus for [ikpu], the labial closure precedes the dorsal closure, resulting in an initial oral pressure increase, followed by a rarefaction upon dorsal closure and concomitant tongue retraction. For [ikpu] however, oral pressure initially rarefies. The labial closure occurs only after dorsal closure. This second closure, with concomitant tongue retraction, results in an initial oral pressure rarefaction.

2. Experiment Two

2.1 Subjects, Methods, Tokens

The same subject and methods were employed in experiment 2. Also, the same VCCV sequences were employed as in experiment 1. However, this time real Korean words were used in phrasal/sentential contexts. In (2) is a complete list of the employed phrases/sentences. The relevant segmental sequences are underlined.


- (2) a. /cəki n<u>upki</u> siləjo/ there lying hate I hate lying over there
 - b. /cəki n<u>up-ku</u> sip-ne/ there lie-Con want-SE I want to lie over there

- c. /os-l <u>ipki</u>-ka himtil-ta/ clothes-Acc wearing-Nom hard-SE It is hard to wear the clothes
- d. /hakkyo <u>ipku/</u> school entrance school entrance
- e. /kukpi juhak/ awarded by the nation studying abroad overseas study fellowship
- f. /pukpu cipaŋ/ north province north area
- g. /sikpi putam/ food expense burden burden of food expenses
- h. /sikphum-pu/ food section food section

The abbreviations indicate the following: Con = verb connective; SE = sentence ender; Acc = accusative case marker; Nom = nominative case marker. Note that [ku] is a free variant of the standard pronunciation, [ko].

2.2 Results

The results of experiment 2 are shown in figures 13a-h. Results are identical, except for the pressure readings for [ipku]. Figure 13c indicates no change in oral pressure for this form. Identical results were obtained in an-

Fig. 13. Sample airflow, oral pressure, and pharyngeal pressure records for [upki, upku] (\mathbf{a}, \mathbf{b}) , [ipki, ipku] (\mathbf{c}, \mathbf{d}) , [ukpi, ukpu] (\mathbf{e}, \mathbf{f}) , and [ikpi, ikpu] (\mathbf{g}, \mathbf{h}) , extracted from real words.

other trial, for this form only. This, we think, is due to a process of Korean place assimilation whereby labial consonants assimilate in place to a following velar consonant. If /ipku/ is realized [ikku], no change in oral pressure is expected, as there is no labial closure. It should be noted that this is an optional process, thus accounting for the mixed results obtained. In the following section, this result is considered in more detail. We conclude that the results of experiment 2 are consistent with those of experiment 1.

3. Discussion

In experiment 2, no change in oral pressure for /ipku/ was observed. This, we suspect, is due to an optional process of place assimilation. Based on previous work in Korean phonology [Kim-Renaud, 1974; Cho, 1990, among others], we assume that this process is optional, and dependent on the style and the rate of speech. In casual speech, coronal obstruents assimilate in place to a following consonant (3a, b); labials assimilate only to a following velar (3c, d).

(3) Korean place assimilation:

a.
$$/ \tan + ko/ \rightarrow [takk'o]$$
 'close + and'
b. $/ \text{nac} + \text{pam}/ \rightarrow [napp'am]$ 'daytime (and)
night'
c. $/ \text{ip} + ko/ \rightarrow [ikk'o]$ 'wear + and'
but
d. $/ \text{ip} + ta/ \rightarrow [ipt'a]$ 'wear + sentence
ender'

We briefly discuss the implications of these results for the theory of articulatory phonology [Browman and Goldstein, 1986, 1990, 1992]. Within this theory, casual speech alternations such as those in (4) [and presumably (3)] are seen as the result of gestural overlap and/or gestural reduction. Gestural overlap involves the obscuring of one gesture by another temporally co-occurring gesture. Gestural re-

duction involves the reduction in magnitude of a gesture.

Thus, what a phonologist might model as the regressive place spreading of /p/ with place delinking of /d/ in (4b), emerges from the gestural model as /p/ superimposed on /d/, with the /d/ gesture maintained, though possibly in reduced form.

The present data are in accordance with this approach to casual speech alternations. Experiment 1 shows that nonce forms with labial//velar sequences involve a high degree of gestural overlap. Experiment 2, in which real words are employed, also shows this high degree of gestural overlap. In addition, however, those -pk- sequences in which no oral pressure change is observed indicate that gestural reduction is playing a role here as well: when no oral pressure change in -pk- sequences is observed, we may conclude that labial closure does not take place. Instead, this labial gesture is reduced, perhaps to zero.

Jun [in prep.] investigates in greater detail the distinct roles of both gestural overlap and gestural reduction in the production and perception of casual and formal speech involving /pk/ sequences in Korean. Thus far 14 native Korean speakers have been tested. Preliminary results suggest that gestural reduction plays a decisive role in the percepiton of /pk/ sequences: /pk/ sequences displaying pressure changes, and those not displaying pressure changes, are seemingly perceived as unassimilated and assimilated, respectively. That is, /pk/ with labial closure is perceived as [pk], while /pk/ with no labial closure is perceived as [kk].

4. Conclusion

The significance of the present study rests in the methodology employed, in the results obtained, and, potentially, in the theoretical conclusions that may be drawn. To our knowledge, no previous study demonstrates consonant coproduction in terms of oral air pressure, and further, no previous study reports on coarticulatory effects involving four ordered segments. The theoretical implications of the obtained results may prove useful to both phoneticians and phonologists in their investigations of phonetic coarticulation and phonological spreading processes.

References

- Browman, C. P.; Goldstein, L.: Towards an articulatory phonology. Phonol. 3: 219–252 (1986).
- Browman, C. P.; Goldstein, L.: Tiers in articulatory phonology; in Kingston, Beckman, Papers in Laboratoy Phonology I: Between the grammar and physics of speech, pp. 341–376 (Cambridge University Press, Cambridge 1990).
- Browman, C. P.; Goldstein, L.: Articulatory phonology: an overview. Phonetica 49: 155–180 (1992).
- Byrd, D.: Perception of assimilation in consonant clusters: a gestural model. Phonetica 49: 1–24 (1992).
- Cho, Y. Y.: Parameters of consonantal assimilation; PhD diss. Stanford University (1990).
- Demolin, D.: Le Mangbetu: étude phonétique et phonologique; doct. diss. Université Libre de Bruxelles (1992).
- Fowler, C. A.: Converging sources of evidence on spoken and perceived rhythms of speech: cyclic production of vowels in monosyllabic stress feet. J. exp. Psychol. gen. 112: 386–412 (1983).

- Jun, J.: On gestural reduction and gestural overlap in Korean and English /pk/ clusters (UCLA, Los Angeles, in preparation).
- Kim-Renaud, Y. K.: Korean consonantal phonology; PhD diss. University of Hawaii (1974).
- Kim-Renaud, Y. K.: Studies in Korean linguistics (Hanshin, Seoul 1986).
- Kozhevnikov, V. A.; Chistovich, L. A.: Speech: articulation and perception. Joint Publication Res. Service, No. 30,543 (US Department of Commerce, Washington 1965).
- Ladefoged, P.: A phonetic study of West African languages (Cambridge University Press, Cambridge 1962).
- Maddieson, İ.: Shona velarization: complex consonants or complex onsets?

 UCLA Working Papers in Phonet.
 74 (1990).
- Marchal, A.: Des clics en français? Phonetica 44: 30–37 (1987).

- Nolan, F.: The descriptive role of segments: evidence from assimilation; in Docherty, Ladd, Papers in Laboratory Phonology. II. Gesture, segment, prosody, pp. 261–280 (Cambridge University Press, Cambridge 1992).
- Ohala, J. J.: Monitoring soft palate movements in speech. Project on Ling. Analysis Rep. 13.JO1-JO15 (Berkeley 1971).
- Ohala, J. J.: Speech timing as tool in phonology. Phonetica 38: 204-212 (1981).
- Öhman, S. E. G.: Coarticulation in VCV utterances: spectrographic measurements. JASA 39: 151–168 (1966).
- Zsiga, E.: Acoustic evidence for gestural overlap in consonant sequences. Haskins Lab. Status Rep. Speech Res., SR 111/112, pp. 1–20 (Haskins Laboratories, New Haven 1992).
- Zsiga, E.: Features, gestures, and the temporal aspects of phonological organization; PhD diss. Yale University (1993).